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Abstract
We consider the d = 2 Ising strip with surface fields acting on boundary
spins. Using the properties of the transfer matrix spectrum we identify two
pseudotransition temperatures and show that they satisfy similar scaling
relations as expected for real transition temperatures in strips with d > 2. The
solvation force between the boundaries of the strip is analysed as a function
of temperature, surface fields and the width of the strip. For large widths,
the solvation force can be described by scaling functions in three different
regimes: in the vicinity of the critical wetting temperature of the 2D semi-
infinite system, in the vicinity of the bulk critical temperature and in the regime
of weak surface fields, where the critical wetting temperature tends towards the
bulk critical temperature. The properties of the relevant scaling functions are
discussed.

PACS numbers: 05.50.+q, 68.35.Rh, 68.08.Bc

1. Introduction

Fluctuating condensed-matter systems enclosed by walls are characterized by the appearance
of a solvation force (also called the Casimir force) acting between the walls. This force
originates from the fluctuations of the confined system. The properties of solvation forces
have been the subject of increasing interest during the last few years [1–29]. Both the shapes
and possible chemical inhomogeneity of the confining walls influence the form of solvation
forces [12, 15, 22, 25, 28, 29] which additionally depend on the thermodynamic state of
the system and on the interaction between the system and the walls. In particular, if the
system is chosen to be at its bulk critical point, the solvation forces become long ranged and
show universality [4, 11, 30] while in the vicinity of criticality scaling behaviour is observed
[4, 7–16, 18–22, 24–26, 29, 30, 34].

In this paper, we analyse the solvation forces in two-dimensional Ising strips. The spins are
confined by two parallel, planar and chemically homogeneous walls separated by distance M.
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Each wall interacts with the system by surface fields acting on the boundary spins. Our goal
is the exact determination of the properties of the solvation forces as functions of temperature,
surface fields and the width of the strip M. To investigate these properties we use a method based
on exact diagonalization of the transfer matrix which is followed by numerical determination
of appropriate eigenvalues.

The Ising model belongs to the bulk universality class of binary liquids. In the case of
confined binary liquids, the confining walls preferentially absorb one or the other component.
In the Ising model, this preference corresponds to different signs of the symmetry breaking
surface fields [4].

This paper is organized as follows. In section 2, we define the 2D Ising strip, recall its
properties in the bulk limit as well as the properties of the semi-infinite system related to
critical wetting. In section 3, we define pseudotransition temperatures and check that they
display the scaling properties expected for higher dimensional systems. Section 4 is devoted to
our main goal, i.e. analysis of the properties of the solvation force acting between the system
boundaries. We first recall the definition of solvation force and adapt it to our model. We
study this force numerically to establish several of its properties as functions of temperature,
surface fields and the distance between the walls. For large width of the strip, we explain
these properties by introducing scaling functions in three different scaling regimes: around
the wetting temperature, around the bulk critical temperature and in regime in which both of
the above temperatures are close to each other.

2. Ising strip

2.1. The model

We consider an Ising model on a two-dimensional square lattice with N columns and M rows,
and impose periodic boundary conditions in the horizontal direction. In this way, the Ising
strip of width M is obtained. We assume that surface fields h1 and h2 act on the spins located at
the bottom and the top row, respectively; these fields can be considered as model short-range
interactions between the system and the surrounding walls. The Hamiltonian of the system
has the form

H({sn,m}) = −J

N∑
n=1

M−1∑
m=1

(sn,msn+1,m + sn,msn,m+1) −
N∑

n=1

(h1sn,1 + h2sn,M), (1)

where sn,m = ±1 denotes the spin located in the nth column and mth row, and sN+1,m = s1,m.
The coupling constant J is positive (ferromagnetic case) and we assume no bulk field h acting
on the system.

In this paper, we concentrate on two special choices of surface fields corresponding to the
so-called symmetric and antisymmetric cases: in the symmetric case (denoted by superscript
S) one has h1 = h2 while in the antisymmetric case (AS) h1 = −h2. Later on, we will also
use superscript O to denote the limiting case h1 = h2 = 0 which is referred to as the free case.

2.2. The free energy of the strip

To calculate the free energy of our system, we use the method based on exact diagonalization
of the transfer matrix. In this method, the 2M+2 × 2M+2 transfer matrix is represented by
(2M + 4) × (2M + 4) orthogonal matrix R. Eigenvalues of the transfer matrix are calculated
from eigenvalues of R which can be found by solving recurrence equations for eigenvectors
of R [9, 32, 33]. Here we only recall the final formulae for the free energy per column (here
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and in the following formulae we do not explicitly write the dependence of the free energy
and other quantities on the coupling constant J),

f̄ S(T , h1,M) = −kBT

[
1

2
(γ1 + γ2 + γ3 + · · · + γM+1) +

M

2
ln(2 sinh 2K)

]
, (2)

f̄ AS(T , h1,M) = −kBT

[
1

2
(−γ1 + γ2 + γ3 + · · · + γM+1) +

M

2
ln(2 sinh 2K)

]
, (3)

where K = J/kBT and kB is the Boltzmann constant. The coefficients γ1 < γ2 < · · · < γM+1

are positive functions of parameters T , h1 and M defined by relation

cosh γk = cosh(2K − 2K∗) + 1 − cos ωk, (4)

where parameter K∗ is obtained from sinh 2K sinh 2K∗ = 1. The functions ωk are solutions
of the equations

(M + 1)ωk − δ′(ωk, T ) − φ(ωk, T , h1) = (k − l)π, 0 < ωk < π, (5)

and k = 1, 2, . . . , M + 1. The function l(T , h1) is defined as

l(T , h1) =
⎧⎨
⎩

2 for T < Tw,

0 for Tw < T < Tc,

1 for T > Tc.

(6)

The symbol Tc denotes the bulk critical temperature [31]

Kc = J

kBTc
= 1

2
ln(1 +

√
2), (7)

while Tw(h1) denotes the temperature of the critical wetting transition taking place in
the semi-infinite Ising model. It depends on the surface field h1 and can be defined by
equation [14]

W(Tw, h1) = 1, (8)

where

W(T, h1) = (cosh 2K∗ + 1)(cosh 2K − cosh 2K1), K1 = h1

kBT
. (9)

We observe that for certain ranges of temperatures (5) may not have a solution for k = 1 and
k = 2. In such cases, ω1 and ω2 are imaginary and satisfy equations

ωk = iuk, e−ukM = αk exp{i[δ′(iuk, T ) + φ(iuk, T , h1)]}, k = 1, 2, (10)

with αk = ±1. The detailed rules for selecting the signs of α1 and α2 are presented in the
following subsection. Functions φ and δ′ are calculated from the formulae

eiφ(ω,T ,h1) = eiω W eiω − 1

eiω − W
, e2iδ′(ω,T ) = (eiω − A)(eiω − B)

(A eiω − 1)(B eiω − 1)
, (11)

where A(T ) = (tanh K tanh K∗)−1, B(T ) = tanh K/ tanh K∗, and the function W(T, h1)

is given in (9). To determine the angles φ(ω, T , h1) and δ′(ω, T ) uniquely, we pick the
continuous branches of solutions for which

φ(0, T , h1) = π, δ′(0, T ) = −π. (12)

For ω = 0 and T = Tw, the angle φ(ω, T , h1) is undefined (W(Tw, h1) = 1) while at T = Tc

the angle δ′(ω, T ) is undefined (K = K∗, so B = 1). Although at these temperatures our
formulae are useless, one can use the continuity of the free energy and calculate it using a
limiting procedure.

3
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Figure 1. Plots of the left-hand side of (5) divided by π for h1 = 0.8J (Tw ≈ 0.621 Tc) and
M = 5. The solutions ωk correspond to integer values of this function. For T = 0.5Tc < T

γ

w,M

there are M − 1 = 4 solutions, for T
γ

w,M < T = 0.6Tc < Tw there are M = 5 solutions, for

Tw < T = 0.8Tc < Tc there are M + 1 = 6 solutions, for Tc < T = 1.01Tc < T
γ

c,M there are

M + 1 = 6 solutions and for T
γ

c,M < T = 1.2Tc there are M = 5 solutions. The total number
of solutions is M + 1 = 6; the missing solutions correspond to imaginary values of ω and are
determined from (10).

2.3. The characteristic temperatures

Because the lower critical dimension of the Ising model equals two (dl = 2), no true transition
may occur in a two-dimensional Ising strip with finite M. On the other hand, the infinite 2D Ising
model experiences the critical point behaviour at T = Tc, while in the semi-infinite 2D Ising
model with the surface field h1, the critical wetting transition takes place at T = Tw, Tw < Tc

[8]. Below, we discuss the properties of (5) and on this basis we define the characteristic
temperatures T

γ

w,M and T
γ

c,M .
First we consider the T < Tw case, for which l = 2; see (6). For small enough

temperatures the left-hand side of (5) is an increasing function of ω, it equals 0 for ω = 0, and
thus this equation does not have a solution for k = 1 and k = 2. The coefficients ω1 and ω2

are thus found from (10) with α1 = −1 and α2 = 1. However, when T is getting close to Tw

the situation becomes different: the left-hand side of (5)—upon increasing ω—first decreases,
has a minimum and then increases. As a result (5) has a solution for k = 2. At the same
time, to obtain coefficient ω1 equation (10) must be used with α1 = −1. The M-dependent
temperature, which separates the above two possibilities, is denoted by T

γ

w,M .
When Tw < T < Tc, one has l = 0 and all coefficients ωk are defined by (5).
For T > Tc, l = 1 and for temperatures well above Tc equation (5) does not have a

solution for k = 1; the coefficient ω1 can be calculated from (10) with α1 = +1. When T is
close to Tc the left-hand side of (5) is a non-monotonic function of ω, and thus the solution
exists for any k. The characteristic temperature separating these two cases is denoted by T

γ

c,M .
Typical plots of the left-hand side of (5) are shown in figure 1.
To find the formulae for M-dependent temperatures T

γ

w,M and T
γ

c,M we use the fact that at
these two temperatures (5) has the double solution ω = 0. In other words, the condition

∂

∂ω

∣∣∣∣
ω=0

[(M + 1)ω − δ′(ω, T ) − φ(ω, T , h1)] = 0 (13)

must be satisfied, which leads to
2W(T, h1)

W(T , h1) − 1
− sinh 2K

sinh(2K − 2K∗)
= M + 1, (14)
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Figure 2. Plot of the left-hand side of (14) for h1 = 0.8J (for which Tw ≈ 0.621 Tc). At
pseudotransition temperatures T

γ

w,M(h1,M) and T
γ

c,M(h1, M) this function is equal to M + 1. To
guide an eye the vertical broken lines corresponding to T = Tw and T = Tc are drawn.

where W(T, h1) is as defined in (9). To find solutions of this equation, it is useful to analyse its
left-hand side as a function of temperature: it equals 1 for T = 0, is an increasing function of
temperature for 0 < T < Tw, at T = Tw reaches infinity and has a pole (W = 1 for T = Tw).
For Tw < T < Tc the left-hand side of (14) is negative and has another pole for T = Tc

(K = K∗ at T = Tc). For T > Tc it decreases from infinity at T = Tc to 0 for T → ∞.
A typical plot of left-hand side of (14) is shown in figure 2. Equation (14) has two solutions
for any positive M—the solution T

γ

w,M is always smaller than Tw and approaches the wetting
temperature monotonically as M → ∞, while the solution T

γ

c,M(h1,M) is always larger than
Tc and decreases monotonically to Tc as M → ∞.

3. Properties of pseudotransition temperatures

In an infinite strip of width M and dimension d larger than the lower critical dimension
dl, d > dl = 2, true phase transitions corresponding to the non-analyticity of free energy
occur.

In a strip with symmetric surface fields (S) capillary condensation is expected. For a
vanishing bulk field, the strip is filled with phase favoured by the walls for T < Tc,M . The
critical temperature Tc,M is shifted away from Tc [5]. On the other hand, for antisymmetric
surface fields (AS) with no bulk field, a transition is observed at Tw,M that is shifted from Tw.
For T < Tw,M the interface separating two phases is located close to one of the walls while
for T > Tw,M this interface is located in the middle of the system [8]. Temperature Tw,M

approaches Tw as M → ∞. In the AS case, the second phase transition at Tc,M located close
to Tc also occurs.

In a two-dimensional strip no phase transition may occur for finite M. However, for
large strip widths we expect some thermodynamics functions to vary rapidly close to certain
temperature values while remaining analytic. It is convenient to define these pseudotransition
temperatures which can then be used to characterize the behaviour of our system. Since all
functions are analytic, these temperatures cannot be defined uniquely. There are different
criteria according to which the pseudotransition temperature can be defined and thus there
is no single Tw,M and Tc,M . One possibility corresponds to T c

w,M and T c
c,M defined as the

temperatures at which the specific heat attains its maximum values. Here we would like to
show that the just defined temperatures T

γ

w,M and T
γ

c,M may be treated as such pseudotransition
temperatures.

5
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Figure 3. The plot of the amplitude A1 (see (15)) as a function of Tw.

First, we check how the difference Tw −T
γ

w,M depends on the width of the strip M for large
M. This can be done on the basis of (14). Using the implicit function theorem one obtains

Tw − T
γ

w,M

Tc
= A1(h1)

M
+ O(M−2), A1(h1) = 2

(
Tc

∂W

∂T

∣∣∣∣
T =Tw

)−1

. (15)

Figure 3 shows the plot of the amplitude A1(Tw) after reparametrization from h1 to Tw has
been done according to (8).

Parry and Evans [8] used scaling hypothesis to postulate that for M → ∞
Tw − Tw,M ∼ M−1/βs . (16)

Because for a 2D Ising model βs = 1 the behaviour of the difference between pseudotransition
temperature T

γ

w,M and Tw agrees with this hypothesis.
Similarly, for T

γ

c,M one obtains from (14)

T
γ

c,M − Tc

Tc
= A2

M
+ O(M−2), (17)

where the amplitude A2 = [2 ln(1 +
√

2)]−1 is universal. Since for a 2D Ising model one has
ν = 1, thus

(
T

γ

c,M − Tc
)
/Tc ∼ M−1/ν as expected on the basis of scaling arguments [30]. We

note that T
γ

c,M is always larger than Tc.
The wetting temperature is a continuous function of the surface field h1. Parry and Evans

[8] proposed the scaling function XAS which describes the dependence of Tw,M on the width
of the strip M and the surface field h1 in the limit h1 → 0 and M → ∞ with h1M

�1/ν fixed

Tc − Tw,M

Tc
= M−1/νXAS(h1M

�1/ν). (18)

It turns out that the pseudocritical temperature T
γ

w,M defined by (14) satisfies a similar scaling
relation. We have found the exact expression for the corresponding scaling function X

γ

AS.
For a 2D Ising model �1 = 1

2 and the scaled variable takes the form x = h1M
1/2. In

order to find the scaling function X
γ

AS(x)

Tc − T
γ

w,M

Tc
= M−1X

γ

AS(x) + O(M−2), (19)

we introduced in (14) the surface field h1 = xM−1/2 and obtained in the scaling limit

X
γ

AS(x) = [2 ln(1 +
√

2)]−1 +
1

4
(1 +

√
2) ln(1 +

√
2)

( x

J

)2
. (20)

6
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It is interesting to note that this result is true only for fixed x; the scaling function

X
γ

AS(x) = lim
M→∞

M
Tc − T

γ

w,M(M, xM−1/2)

Tc
(21)

is not a uniform limit.
The scaling law (19) has finite-size corrections of order M−2 which are present even for

h1 = 0.

4. Solvation forces

4.1. Definition

The free energy of the strip per column can be calculated from (2) and (3). For both S and AS
cases it naturally decomposes into the sum of three terms

f̄ α(T , h1,M) = Mfb(T ) + f α
s (T , h1) + f α

int(T , h1,M), (22)

where α ∈ {S, AS}, fb is the bulk free energy density [35] equal to

fb(T ) = −kBT

[
1

2π

∫ π

0
arccosh[cosh(2K − 2K∗) + 1 − cos ω] dω +

1

2
ln(2 sinh 2K)

]
,

(23)

f α
s (T , h1) is the surface free energy per column, and the remaining term f α

int(T , h1,M)

describes the interaction between the boundaries of the strip per column. By definition, the
surface free energy f α

s (T , h1) does not depend on M, and f α
int(T , h1,M) tends to 0 as M → ∞.

In general, the solvation force is defined as minus derivative of f α
int with respect to the

distance between the boundary walls. In the present case, because M is integer, we use the
definition

f α
solv(T , h1,M) = −[

f α
int(T , h1,M + 1) − f α

int(T , h1,M)
]
/kBT , (24)

where the factor 1/kBT is additionally introduced to make the solvation force dimensionless.
This definition is equivalent to

f α
solv(T , h1,M) = [f̄ α(T , h1,M) − f̄ α(T , h1,M + 1) + fb(T )]/kBT . (25)

It is also useful to introduce the difference between the solvation forces corresponding to
different boundary fields configurations

�fsolv(T , h1,M) = f AS
solv(T , h1,M) − f S

solv(T , h1,M). (26)

Using (2), (3) and (25) it is straightforward to show that

�fsolv(T , h1,M) = γ1(T , h1,M) − γ1(T , h1,M + 1). (27)

This difference is easier to study analytically than the expression for f α
solv(T , h1,M); see (25).

4.2. Basic properties

We start our analysis by evaluating numerically the solvation forces for different temperatures
T, strip widths M and surface fields h1.

In the symmetric case (S), the solvation force is always negative (attractive). For h1

close to J this force has a minimum at T S>
min > Tc and tends to 0 both in the small and large

temperature limits. Upon decreasing the boundary field h1, the absolute value of solvation
force decreases, and for h1 small enough a second minimum appears at T S<

min < Tc. Upon
further decreasing h1, the minimum located at T S>

min disappears. The range of h1 for which

7
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Figure 4. Plots of the solvation force in the symmetric case (h1 = h2) as a function of temperature
for M = 25 and different values of the boundary field h1.

)a( )b(

-5

 0

 5

 10

 15

 20

 25

 0.8  0.9  1  1.1  1.2  1.3

10
4  f 

A
S

so
lv

T /Tc T /Tc

h1=1.0 J
h1=0.8 J
h1=0.6 J
h1=0.4 J

-8

-6

-4

-2

 0

 2

 4

 0.8  0.9  1  1.1  1.2  1.3

10
4  f 

A
S

so
lv

h1=0.20 J
h1=0.10 J
h1=0.08 J
h1=0.06 J

Figure 5. Plots of the solvation force in the antisymmetric case (h2 = −h1) as a function of
temperature for M = 25 and different values of the boundary field h1.

f S
solv has two minima depends on M, and for M → ∞ this range shrinks to 0. Plots of the

solvation force in the symmetric case as a function of temperature for different boundary fields
are presented in figure 4. The behaviour of this force will be studied in detail using scaling
functions later on.

In the antisymmetric case (AS), the solvation force is plotted in figure 5. For h1 = J

this force is positive (repulsive) for all temperatures and has maximum at T AS
max located

slightly below Tc. The solvation force f AS
solv(T , h1 = J,M) tends to 0 in the high- and

low-temperature limits. However, for h1 < J the solvation force changes sign. It is negative
for small temperatures, has a minimum at T AS

min < Tw, and zero at T ∗ slightly above Tw. For
temperatures higher than T ∗ the solvation force is positive and has a maximum close to Tc.
For h1 approaching 0, T ∗ tends to Tc and the (negative) value at the minimum below the
wetting temperature decreases. The (positive) maximum value of the solvation force also
decreases and disappears in the limit h1 → 0. We also looked at the location of the maximum
of the solvation force T AS

max. For small M,T AS
max is located above Tc. Upon increasing M the

temperature T AS
max first crosses the critical temperature and then, upon further increasing of M,

approaches Tc from below. The exact value of M at which T AS
max is equal to Tc depends on the

boundary field h1. We note that the limiting value of the solvation force at h1 = 0 is the same
for both boundary fields configurations. Similar plots of solvation force for weak, symmetric
surface fields have already been obtained with the help of density-matrix renormalization
group for the Ising strip with surface fields extending beyond the boundary rows [19].

8
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The leading M-dependence of the solvation force evaluated at Tc is known exactly [2, 3]:

f S
solv(Tc, h1,M) = − π

48M2
+ O(1/M3), (28a)

f AS
solv(Tc, h1,M) = 23π

48M2
+ O(1/M3), (28b)

f O
solv(Tc, 0,M) = − π

48M2
+ O(1/M3). (28c)

The above values of the universal amplitudes are also recovered numerically in our analysis.
We checked numerically that for T 
= Tc [10]

f S
solv(T , h1,M) ∼ exp[−M/ξb(T )], (29)

where

ξb =
{
(4K − 4K∗)−1 for T < Tc,

(2K∗ − 2K)−1 for T > Tc
(30)

is the bulk correlation length characterizing the asymptotic decay of the spin–spin correlation
function [36]. Using (27) and the dependence of γ1 on M for fixed T [14] we checked that (29)
implies the following leading order decay of the solvation force in the antisymmetric case:

f AS
solv(T , h1,M) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp[−M ln W(T, h1)] for T < Tw,

exp[−M/ξb(T )] for T = Tw,

1/M3 for Tw < T < Tc,

1/M2 for T = Tc,

exp[−M/ξb(T )] for T > Tc.

(31)

The solvation force is a continuous function of temperature and the above formula is correct
only in the M → ∞ limit. Below, we discuss the behaviour of the solvation force around Tw

and Tc by introducing the appropriate scaling functions.

4.3. Scaling at Tw

To study properties of the solvation force close to Tw in the antisymmetric case, we take the
scaling limit M → ∞, T → Tw with parameter X = M ln W(T, h1) ∼ (Tw − T )M fixed.
The function W(T, h1) has been introduced in the scaling variable to simplify the scaling
function.

To study the solvation force in this limit we use (27). For T < Tw coefficient γ1 is given
by (10) with k = 1 and α1 = −1

e−uM = eiδ′(iu,T ) W(T , h1)e−u(e−u − W(T, h1)
−1)

e−u − W(T, h1)
, (32)

where the solution u gives γ1 using (4) with ω1 = iu.
We put M = X/ ln W in (32) and calculate the limit T → Tw using l’Hôpital’s rule. After

introducing H(X) = ∂
∂W

u(W,X)
∣∣
W=1

one gets

e−XH(X) = H(X) − 1

H(X) + 1
, H(X) < 0. (33)

The function H(X) can be calculated numerically for any X > 0. The solution of (32) in the
scaling limit takes the following form:

u = H(X) ln W + O(ln2 W), (34)

9



J. Phys. A: Math. Theor. 42 (2009) 475005 P Nowakowski and M Napiórkowski
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Figure 6. The scaling function G(X, h1) for the solvation force in the antisymmetric case
multiplied by sinh ν(h1) (see (36)).

and one obtains1

γ1(X, h1,M) = ν(h1) − 1

M2

X2H 2(X)

2 sinh ν(h1)
+ O

(
1

M3

)
, (35)

where ν(h1) = (2K − 2K∗)|T =Tw(h1).
Comparison of this result with (29) leads to the conclusion that the first term on the

right-hand side of (26) dominates in the scaling regime (except of T = Tw) and the second
term may be neglected.

With the help of (35) one gets

f AS
solv(X, h1,M) = − 1

M3
G(X, h1) + O

(
1

M4

)
, (36)

where

G(X, h1) = X3H 2(X)

sinh ν(h1)

H 2(X) − 1

2 + X(H 2(X) − 1)
. (37)

Using (33) and (37) it is straightforward to analyse the properties of the scaling function
G(X, h1). For small X

G(X, h1) = X

sinh ν
+ O(X2), (38)

it has a maximum at X0 ≈ 3.221 49 and approaches zero exponentially for large X; see
figure 6.

The above properties can be used to explain the behaviour of the solvation force around
the wetting temperature for large M. In particular, one has

Tw − T AS
min

Tc
= A3(h1)

M
+ O

(
1

M2

)
, (39)

f AS
solv

(
T AS

min, h1,M
) = −A4(h1)

M3
+ O

(
1

M4

)
, (40)

where the functions A3(h1) and A4(h1) are positive and may be obtained from the scaling
function G and the definition of scaling variable X.

The dependence of T ∗ on M can be explained using (26). Exactly at T = Tw the left-hand
side of this equation is zero (exactly at Tw the coefficient γ1(T , h1,M) does not depend on

1 Note that the expression (35) for the function γ1(X, h1,M) is not equivalent to equation (4.7) in [9], because of an
error in calculation.
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M) so the solvation force is the same for both AS and S boundary fields. With the help of
equations (27), (29) and (38) one gets

T ∗ − Tw

Tc
= A5(h1)M

2 exp[−M/ξb(Tw(h1))], (41)

where A5(h1) is a positive function.

4.4. Scaling at Tc

For temperatures close to the bulk critical temperature the solvation force takes in the limit
T → Tc,M → ∞ with fixed h1 and x̄ = sign(T − Tc)M/ξb(T ), the following scaling
form:

f α
solv(T , h1,M) = 1

M2
X α

h1
(x̄) + O(M−3). (42)

Note that the factor sign(T − Tc) introduced in the definition of the scaling variable x̄ makes
it negative for T < Tc and positive for T > Tc. The term O(M−3) denotes the corrections to
scaling which will not be studied in this paper. The bulk correlation length (30) close to Tc

takes the form

ξb(T ) ≈
{
ξ+

0 |t |−1 for T > Tc(x > 0),

ξ−
0 |t |−1 for T < Tc(x < 0),

(43)

where t = (T − Tc)/Tc and the amplitudes ξ+
0 = 2ξ−

0 = 1/[2 ln(1 +
√

2)], such that
x̄ ∼ (T − Tc)M for T close to Tc. Later on we will use

x = tM/ξ+
0 ≈

{
x̄ for x̄ > 0,

x̄/2 for x̄ < 0,
(44)

instead of the scaling variable x̄.
The scaling function X has already been proposed by Evans and Stecki [10], and has

been calculated analytically in both S and AS cases for particular value of the scaling field
h1 = J . Here we consider arbitrary values of h1. Our numerical calculations show that, up to
numerical errors,

X α
h1

(x) = X α
J (x) for h1 
= 0. (45)

We have found numerically that the corrections to scaling depend on h1 and are getting smaller
for h1 close to J. Unfortunately, we are unable to prove analytically this property of scaling
function X α

h1
(x).

However, the difference between the scaling functions for the two cases

�Xh1(x) = XAS
h1

(x) − X S
h1

(x) (46)

can be calculated exactly. For T close to Tc this function is obtained from (27), (4), (5) and
(6). To derive ω1 in the scaling limit, we replace M with xξ+

0 /t in (5) and use the following
property of the function φ(ω, T , h1)

lim
T →Tc

φ(ω1(T , h1,M), T , h1) = 0 (47)

for h1 
= 0. Thus, the only term that depends on the surface field in (5) disappears in this
scaling limit and the calculation of �X goes along the same lines as in [10] (from now on we
drop the index h1 in �X ). This is in full agreement with (45). One obtains

�X = w2 sin w

w − sin w cos w
, (48)

11
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Figure 7. The scaling function X describing the solvation force for any h1 
= 0 and M → ∞
with x = tM/ξ+

0 fixed for: (a) symmetric (h1 = h2) and (b) antisymmetric (h1 = −h2) boundary
fields. Each plot does not depend on the chosen value of h1 and is the same (up to numerical errors
smaller than the resolution of the plot) as the analytically calculated scaling functions for h1 = J

[10].

with w being a solution of

w cot w = x, (49)

where 0 � w < π for x � 1, and w = iu, u > 0 for x > 1.
Function X S

h1
(x) for different h1-values is plotted in figure 7(a). Note that such obtained

curves are indistinguishable from each other which numerically proves (45) for the symmetric
case. It has a minimum for x > 0, so from (42) it follows that for large M

T S>
min(h1,M) = Tc

[
1 +

A6

M
+ O(M−2)

]
, (50)

f S
solv

(
T S>

min, h1,M
) = − A7

M2
+ O(M−3), (51)

with A6 and A7 determined by the position of minimum of the scaling function

A6 ≈ 1.264 24, A7 ≈ 0.430 52. (52)

Because X S
h1

(x) has only one minimum, the second minimum of the solvation force, located
below Tc, disappears in this limit.

Function XAS
h1

(x) for different h1-values is plotted in figure 7(b). Again one notes that
such obtained curves are indistinguishable from each other which numerically proves (45) for
the antisymmetric case. It has a maximum for x < 0 and from (42) it follows that for large M

T AS
max(h1,M) = Tc

[
1 − A8

M
+ O(M−2)

]
, (53)

f AS
solv

(
T AS

max, h1,M
) = A9

M2
+ O(M−3), (54)

with A8 and A9 determined by the position of maximum of the scaling function

A8 ≈ 0.2651, A9 ≈ 1.5341. (55)

The temperature T AS
max is smaller than Tc in this limit. These results have already been reported

in [10] for h1 = J . According to our numerical analysis, the values of constants A6, A7, A8

and A9 are the same for any nonzero surface field h1.2

2 Note a minor disagreement between values of our numerical amplitudes A8 and A9 (55) and those evaluated in [10]
due to minor numerical inaccuracies in [10].
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Table 1. The rules for picking the correct solutions of (60) corresponding to γ1. In all four cases,
there exists exactly one solution for a given range of w.

Range of x and y Domain of w Condition on w

y > 1, x � (y2 − 1)/(y2 + 1) Real 0 � w < min{π, |x|(y4 − 1)1/2}
y > 1, x > (y2 − 1)/(y2 + 1) Imaginary 0 < w/i < x(y2 + 1)(1 + 2y2)−1/2

y � 1, x > 0 Imaginary x(1 − y4)1/2 < w/i
w/i < x(y2 + 1)(1 + 2y2)−1/2

y � 1, x � 0 Imaginary |x|(1 − y2) � w/i � |x|(1 − y4)1/2

4.5. Scaling for Tw → Tc

To explain the properties of the solvation force for small values of the boundary field h1 we
consider the scaling limit M → ∞, T → Tc and h1 → 0 (i.e. Tw → Tc) with two scaling
variables

x = tM

ξ+
0

, y = A0

kBTc

h1

|t |1/2
(56)

fixed. In this limit, the solvation force can be described by scaling function Yα(x, y)

f α
solv(T , h1,M) = 1

M2
Yα(x, y) + O(M−3). (57)

The constant A0 = [(1 +
√

2)/ ln(1 +
√

2)]1/2 in (56) was chosen such that for negative values
of x, the value y = 1 corresponds to T = Tw. For y < 1 equation (57) gives the solvation
force for T below Tw, and for y > 1 – for T above Tw. This scaling function has already been
analysed for subcritical temperatures in [26].3

The scaling function Yα(x, y) can only be calculated numerically; details of evaluation
are presented in the appendix.

Before presenting the numerically evaluated properties of the scaling functions
Yα(x, y), α = S, AS we note that one can test some of these properties through analytically
determined difference

�Y(x, y) = YAS(x, y) − YS(x, y). (58)

This can be done with the help of (27). The coefficient γ1 is given by equation (5), where its
solution ω1 determines γ1 by (4). After applying the scaling limit to the above equation one
gets

γ1(T , h1,M) = 1

M

√
x2 + w2 + O(M−2), (59)

where w is a solution of

w cot w = x
x2[y2 + sign(x)]2 + w2[1 + 2sign(x)y2]

x2(y4 − 1) − w2
. (60)

Depending on x and y equation (60) may have many different solutions to w. The rules for
choosing the correct solution are summarized in table 1; other solutions give the coefficients
γk for k > 1.

3 There is a mistake in the scale of variable x in figures 3–5 in [26]. To get the correct values of x, one should replace

x by
(
ξ−

0

)−2
x in these figures in [26].
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)a( )b(

)c( )d(

-0.16
-0.14
-0.12
-0.1

-0.08
-0.06
-0.04
-0.02

 0

-4 -2  0  2  4  6  8  10

Y
S

x

y=0.3
y=0.6
y=0.9

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

-2  0  2  4  6  8  10  12

Y
S

x

y=1.2
y=1.8
y=2.7

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-15 -10 -5  0  5  10

Y
A

S

x

y=0.3
y=0.6
y=0.9

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-15 -10 -5  0  5  10
Y

A
S

x

y=1.2
y=1.8
y=2.7

Figure 8. The scaling function Yα(x, y) as a function of x for different values of y. Boundary
fields are symmetric (α = S) in (a) and (b), and antisymmetric (α = AS) in (c) and (d).

The function �Y is given by the formula

�Y(x, y) = − lim
M→∞

M2

(
∂γ1

∂M

)
T ,h1

, (61)

which leads to a rather lengthy expression and we refrain from presenting it here.
The scaling functions Yα(x, y) are plotted in figure 8. These plots cannot be used directly

to approximate the behaviour of the solvation force as a function of temperature for large fixed
M, because for fixed y both the temperature T and the surface field h1 become functions of x.
Additionally, the limit x → 0 corresponds to h1 → 0, which explains why—for any y—one
has

YAS(0, y) = YS(0, y) = − π

48
, (62)

i.e. in this limit the scaling function equals the universal amplitude describing the decay of the
solvation force at T = Tc for free boundary conditions.

To explain the observed properties of solvation force, we changed variables in the scaling
function and defined a new function

Ỹα(x, z) = Yα(x,
√

z/|x|), (63)

where the new variable z = |x|y2 ∼ Mh2
1, so that fixing x and z is equivalent to fixing x and y

in the scaling limit. For the new scaling variables one obtains

f α
solv(T , h1,M) = 1

M2
Ỹα(x, z) + O(1/M3), (64)

which can be used to approximate the solvation force as a function of temperature for fixed M
and h1. Plots of Ỹ are shown in figure 9.
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Figure 9. The scaling function Ỹα(x, y) for fixed z as a function of x. Boundary fields are
symmetric (α = S) in (a) and antisymmetric (α = AS) in (b).

We checked that up to our numerical precision

lim
z→∞ Ỹα(x, z) = X α(x), lim

z→0
Ỹα(x, z) = X 0(x), (65)

which is not surprising since for M → ∞ and fixed h1 
= 0 one has z ∼ Mh2
1 → ∞, while

h1 = 0 implies z = 0.
In both S and AS cases the scaling functions Ỹα(x, y) reflect the behaviour of solvation

force for small surface fields. For symmetric surface fields, the negative function ỸS(x, z) has
for fixed z < z1 ≈ 0.1474 only one minimum at negative values of x. At z = z1 the second
minimum located at positive x appears. Upon further increasing of z, the minimum at x < 0 is
increasing and the absolute value of the second minimum is increasing. We could not observe
the disappearance of the minimum at negative x, because for large z the depth of this minimum
is of order of our numerical errors.

For antisymmetric surface fields, the scaling function ỸAS(x, z) has exactly one minimum
and one maximum for all finite z. The minimum is always located at x < 0 and moves towards
−∞ when z is increased. The maximum moves from x = ∞ for z = 0 to a finite negative
value of x for z = ∞. The value of the scaling function at maximum is always positive and
becomes very small for z close to 0. For z = z2 ≈ 0.212, the scaling function vanishes at
x = 0, which means that (up to higher order corrections) the solvation force disappears at
T = Tc. On the other hand, at z = z3 ≈ 3.35, the maximum of the scaling function is located
exactly at x = 0.

The above observations are summed up below.

• In the S case, the minimum of the solvation force located above Tc exists for

h1/J >
A10√

M
+ O(M−3/2), A10 ≈ 0.40. (66)

• In the AS case, the solvation force is zero at T = Tc for

h1/J = A11√
M

+ O(M−3/2), A11 ≈ 0.48. (67)

• In the AS case, the maximum of the solvation force is located exactly at T = Tc for

h1/J = A12√
M

+ O(M−3/2), A12 ≈ 1.89. (68)

15



J. Phys. A: Math. Theor. 42 (2009) 475005 P Nowakowski and M Napiórkowski
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Figure 10. The amplitudes Aα(z) describing the decay of the solvation force at T = Tc for
M → ∞ (see (69)); (a) symmetric surface fields and (b) antisymmetric surface fields. Dashed
lines show the exactly known values of amplitudes for z = 0 and z → ∞.

Finally, we study the behaviour of the solvation force at T = Tc

f α
solv(Tc, h1,M) = Aα(z)

M2
+ O(M−3). (69)

The amplitude Aα(z) can be calculated using the scaling function

Aα(z) = Ỹα(x = 0, z). (70)

From (28a)–(28c) the values of the amplitudes Aα(z) for z = 0 and z → ∞ follow

AS(z = 0) = AAS(z = 0) = AS(z = ∞) = − π

48
, AAS(z = ∞) = 23π

48
. (71)

For other values of z amplitudes Aα(z) can be calculated numerically; they are shown in
figure 10.

5. Summary

In this paper, we considered the two-dimensional Ising strip of width M with surface fields h1

and h2 acting on the boundaries of the system. We considered only symmetric (h1 = h2) and
antisymmetric (h1 = −h2) configurations of the surface fields.

We introduced two pseudotransition temperatures: T
γ

w,M and T
γ

c,M . Around T
γ

w,M , in the
antisymmetric case, the interface separating two magnetic phases moves from position close
to one wall to the centre of the strip. At T γ

c,M the difference between the two phases disappears.
The existence of these two temperatures follows from the properties of our solution to the
free energy. We proved that T

γ

w,M and T
γ

c,M have the same scaling properties as real transition
temperatures in higher dimensions. We also checked scaling relations of T

γ

w,M postulated by
Parry and Evans [8].

The major part of our analysis was concentrated on the properties of the solvation force.
We calculated this force as a function of temperature T, surface field h1 and strip width M. For
symmetric surface fields this force is always negative (attractive). For strong surface fields
the solvation force has a minimum above the bulk critical temperature of the 2D system Tc,
while for small surface fields the minimum is located below Tc. There exists a range of surface
fields for which this force has two minima. For antisymmetric surface fields (and h1 
= J ) the
solvation force changes the sign: it is negative for small temperatures and positive (repulsive)
for high temperatures. The temperature T ∗ at which the solvation force is zero is located very
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close to the wetting temperature of the semi-infinite system Tw. For large surface fields, the
solvation force has a maximum below Tc. When the surface field is decreased, this maximum
crosses Tc. Upon further decrease of h1 the maximum disappears.

To explain these properties we proposed scaling functions in three different scaling
regimes: at Tw, at Tc, and in the case when Tw → Tc.

For antisymmetric surface fields close to Tw we found scaling in the limit M → ∞ and
T → Tw with M(T −Tw) fixed. We succeeded in finding the analytical formula for the scaling
function and used it to explain the behaviour of the solvation force. The scaling function is
non-universal, i.e. it depends on the magnitude of the surface field.

Close to Tc the scaling limit is M → ∞ and T → Tc with M(T − Tc) fixed. For
both symmetric and antisymmetric surface fields the obtained scaling function is, within our
numerical accuracy, independent of h1 for h1 
= 0. We also showed analytically that the
difference between scaling functions in both configurations of surface fields is independent of
h1. Using properties of such obtained scaling functions we explained the location of maxima
and minima of the solvation force around Tc for strong surface fields.

The third scaling limit corresponds to h1 → 0, which implies Tw → Tc, T → Tc and
M → ∞ with M(T − Tc) and Mh2

1 fixed. In this limit, we calculated the scaling function
numerically and checked that it explains the location of minima and maxima of the solvation
force for small surface fields.
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Appendix. Numerical calculation of scaling function Yα(x, y)

In this appendix, we explain methods used to calculate the scaling functions. From (56) and
(57) we get the formula

Yα(x, y) = lim
M→∞

Yα
M(x, y), Yα

M(x, y) = M2f α
solv(T (x,M), h1(x, y,M),M), (A.1)

where T (x,M) = Tc
(
1 + xξ+

0

/
M

)
and h1(x, y,M) = ykBTc

/
A0

(
xξ+

0

/
M

)1/2
. Function

Yα
M(x, y) can be calculated numerically with arbitrary numerical precision. However, when

M is large or high precision is required, the time spent on calculation becomes very long.
Although the limiting value Yα(x, y) cannot be calculated exactly, it may be estimated in
several ways. One possibility is to fix a large but finite M and assume

Yα(x, y) ≈ Yα
M(x, y). (A.2)

This method was used in [26] with M = 200.
In this paper, we applied the least-squares method. Because the difference Yα(x, y) −

Yα
M(x, y) depends on M and its absolute values are large for small M, this method cannot be

used directly.
To overcome this problem and to estimate the value of Yα(x, y) we calculate the values

of Yα
M(x, y) for M = M0,M0 + 1,M0 + 2, . . . , M0 + m and fit the results to the formula

Yα
M(x, y) = B0 +

B1

M
+

B2

M2
+ · · · +

Bn

Mn
, (A.3)

which we assume to reflect the form of leading corrections to the scaling. We take B0 as our
estimate of Yα(x, y). The accuracy of this algorithm depends on values of parameters M0,m
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and n. The larger the values used, the more accurate the result is; we used M0 = 190,m = 10
and n = 3.

The accuracy of such obtained results may be estimated by comparing them with the
results obtained for different values of M0. In addition, to test our results we used (58) with
�Y calculated analytically. The obtained relative accuracy is better than 10−4.
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